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Abstract

The class of time-varying linear systems which are two-time-scale on

an interval may be decoupled by a time-varying transformation of

variables into separate subsystems containing the slow and fast dynamic

parts. The transformation is obtained by solving a nonsymmetric Riccati

differential equation forward in time and a linear matrix differential

equation backward in time. Small parameters are identified which measure

the strength of the time scale separation and the stability of the fast

C-) isubsystem. As these parameters go to zero, the order of the system is

fL J reduced and a useful approximate solution to the original system is

Li. obtained. The transformation is illustrated for examples with strong and

weak fast subsystem stability.
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1. Motivating examples of time-invariant roblems.

The longitudinal dynamics of an F-8 aircraft (cf. Etkin [121 and

Teneketzis and Sandell [35]) can be modeled by an initial value problem

for a fourth order linear system of the form x = Ax + Bu with the

physical variables being the "primarily slow" velocity variation and

flight path angle and the "primarily fast" angle of attack and pitch

rate. The single control is the elevator deflection. The exact solution

for the free response of thecomponents of x(t) is plotted in Figures 1

and 2. Our objective is to determine a solution x(t) of a reduced second

order model which will approximate the dynamics of the given fourth order

model away from the initial time t = 0. We wish, in particular, to avoid

integration of the full order system or a complete eigenanalysis of A

which would provide the exact solution x(t) = eAtx(O) + e A(t-s) B(s)u(s)ds.
0

We note that approximations to the matrix exponential eAt are, indeed,

still the subject of current research (cf. Moler and Van Loan [231) and

that they are not simple to compute.

Our criteria for such approximations will naturally involve the

eigenvalues of A. For this problem, we have the "slow" eigenvalues

Sl,2 = -0.0075 + i0.076 and the "fast" eigenvalues f1,2  -0.94 + i3.O.

Our method will rely upon the time-scale separation, measured by the

smallness of the parameter Ii = 1s2 /fl1 = 0.024, and the relative

stability of the fast eigenvalues, measured by the parameter

: -IRe s2 1/Re fl = 0.0081. Most important, however, is that the ratio

of the fast-mode decay constant (-l/Re(fl)) to the length T of the time

interval of interest satisfies
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-1 1.060 < L = -l 1 .
(W(77 =T <<I

For i and c small we expect our reduced order model to be a good approxi-

mation to the solution on an interval O(cT) < t < T, while on

0 < t < 0(cT) any fast mode components excited by the initial conditions

may be significant and the approximation x(t) which ignores them would be

inappropriate. As the figures suggest, T must be quite large in order

for the initial layer to be relatively narrow.

For large dimensional linear problems, one cannot readily compute

exact solutions to compare approximate solutions against. In power

system models, systems involving several hundred variables are common.

They are often approximated by reduced order models involving both

differential and nonlinear algebraic equations which neglect fast initial

transients (cf. Van Ness [371). An algebraic system g(x,z,t) = 0 could

correspond to a steady-state for the differential system cz = g(x,z,t)

with the small parameter E representing "parasitics". The practical

importance of obtaining reduced order models follows largely because the

computational effort involved in numerically integrating systems of

differential equations increases at least as the square of the order.

A second example of a two-time-scale problem is the sixteenth order

model of a turbofan engine which was the theme problem for a recent

conference on control of linear multi-variable systems (cf. Sain [31],

Skira and DeHoff 1331, and DeHoff and Hall [10]). The linear model is of

the form = Ax + Bu, y = Cx + Du, with the state variables being fan

speeds, pressures and temperatures. The five control variables u are

I

,I



4

fuel flow, exit nozzle area, two vane angles, and compressor bleed; and

the outputs y are thrust, total airflow, a temperature, and two stall

margins. The objective in the controller design is to achieve rapid

thrust response without violating several operating constraints. The

model is one of thirty-six different linear models obtained from a non-

linear simulation of the engine. It represents the turbofan operating at

sea level with near maximum non-afterburner power. This is an operating

point which every engine must pass through at takeoff. Based on the

eigenvalues of this model and T = 2 the time-scale separation and fast

mode stability parameters are ( j,c) = (0.304, 0.000867), (0.371, 0.0285),

(0.383, 0.0744), respectively, for the number n, of "slow" modes chosen

as 15, 5 or 3. Since an order reduction from 16 to 15 isn't substantial,

we shall use nI = 5. In all cases, the time scale separation and relative

stability parameters p and u are only marginally small, while the fast-mode

stability parameter c is quite small. We nonetheless obtain good

approximate solutions by solving a reduced (fifth) order system instead

of the original sixteenth order problem. In Figures 3 and 4, the exact

solution of the sixteenth order problem and the solution of our fifth

order model of the slow dynamics are plotted for the thrust and fan speed

in response to changes in controls. The control inputs are step changes

in fuel flow rates and inlet guide vane position. The second case, cf.

Figure 4, provides a severe test to the reduced order model since the

inlet guide vane is located at the front end of the engine and there is

some delay before its effect is propagated to the net thrust. We note

that the approximations are not good for t < 0.28 z 10c and that this

initial layer will become narrower relative to T as r tends toward zero.

'1
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2. The time-varying problem-an exact approach..

Several earlier papers (cf. Kokotovic [16], Chow and Kokotovic [7],

O'Malley and Anderson [28] and Anderson [3]) have discussed time-

invariant problems, so let us now consider the time-varying system

(1) x A(t)x + B(t)u(t) , 0 < t < T

where A and Bu are specified.

A system such as (1) will be called two-time-scale on the interval

[0,T] if the spectrum X(A(t)) of the n x n matrix A can be partitioned

into two sets S(t) and F(t) with nI and n2 = n - nI elements,

respectively, such that

X(A(t)) = S(t) U F(t)

where the eigenvalues satisfy

(2) max js i (t)i - s(t) << f(t) min if(t)I
si ES f .CF

throughout 0 < t < T with

(3) = max (s(t)/f(t)) << 1
O<t<T

Roughly, then, i is an upper bound for a ratio of time-varying eigen-

values. We note that if jRe fj(t)! is large, a corresponding vector

solution of the unforced system will be locally exponentially growing or

decaying, while if JIM fj(t)J is large, the corresponding solution will

oscillate rapidly locally. We also note that different modelers might

select different values of n, for the same system, and that the more

I iI
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difficult problems where n varies across [0,T] will not be considered

here. Finally, the common situation where the eigenvalues of A cluster

into several sets might be hdndled by repeated application of our

technique, cf. Kokotovic et al. [17] and Winkelman et al. [401.

For general time-varying systems, it is well known that eigenvalue

stability does not imply stability, cf. e.g. Coppel [8j. The result is,

however, more nearly true for singularly perturbed systems. Thus, for

the singularly perturbed initial value problem for

x = A(t,r)x + B(t,K)z + C(t,K)

Kz = D(t,K)x + E(t,K)z + F(t,K)

with smooth coefficients on 0 < t < T, the limiting solution as K tends

to 0+ on an interval 0 < t < T will satisfy the reduced order system

X = A(t,O)X + B(t,O)Z + C(t,O) , X(O) = x(O)

0 = D(t,O)X + E(t,O)Z + F(t,O) ,

provided the matrix E(t,O) is stable throughout 0 < t < T. Further, an

initial boundary layer (or region of nonuniform convergence) occurs in

the z variable near t = 0 and the fast dynamics there evolve on a

Tr = t/K time scale, cf. O'Malley [26,27]. Such theory suggests that

eigenvalue stability may be appropriate for determining the behavior of

two-time-scale systems. These results apply t. systems where the

coefficient matrices A,... ,F have bounded t and - derivatives. Related

problems on the semi-infinite interval t > 0 are treated in Hoppensteadt

I1
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counterexamples exist and caution must be observed, cf. Kreiss [18,191. For

these reasons, Kreiss introduced hypotheses demanding that E(t,O) be

"essentially diagonally dominant."

We shall not suppose that the given system (1) is two-time-scale,

but rather that it can be transformed into a two-time-scale system by a

time-varying transformation

(4) y = T(t)x ,

with the system for y being "time-scale decoupled" throughout 0 < t < T.

Specifically, let the transformation matrix T have the form

in+ K(t)L(t) Kt ~

l L(t) 1 0 in1 L(t) In(s)T~) : L~) n2 n n

and let the matrices L(t) and K(t) be determined so that

(6) y = A(t)y + T(t)B(t)u

where A has the block-diagonal form

Ail(t) 0 7

A(t) =

L 0 A22(t

with the nI eigenvalues of A11 being small in magnitude compared to those

of A22 throughout 0 < t < T. For u =0, the slow modes for (6) would be

given by y where y, satisfies the lower order system A :

r

/
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while the fast modes are 2I where y2 = A2 2 Y2. We note that the trans-

formation matrix T has the exolicit inverse

In -K(t)

(7) T1 (t) =

I-L(t) In + L(t)K(t)

L 2

so T is always nonsingular and transformations between x and y coordinates

are particularly convenient. Analogous transformations have been employed

in the singular perturbations context by Wasow [9], Harris [14], and

Kokotovic [16], for discrete problems by Phillips (291, and for difference

equations by Matheij [21).

As a first step toward time-scale decoupling, let us set

(8) z T (t)x

for the block triangular matrix

Tl(t)=
L(t)

Clearly

(9) z A(t)z + Tl(t)B(t)u

where

e,

/i
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A(t) = (T A + TI)T- I = (Aj

A - AI2L AI2  -

+ LAI - A 22L - LA 2L + A21 A22 + LA121

presuming the original A matrix and A are both partitioned after their

first nI rows and columns. In order for A to be upper block-triangular,

the n2 x nI matrix L must satisfy the matrix Riccati equation

(10) L = A2 2L - LA11 + LA12L - A21

throughout 0 < t < T. Selecting L(e) = 0 for a yet-unspecified endpoint

e = 0 or T makes Tl(e) = 0 and T1(e) a similarity transformation. Thus

A(e) will be two-time scale provided A(e) is. Let us suppose

(HI) A(e) has n, "slow' eigenvalues in S(e) and n2 "fast"

eigenvalues in F(e), e = 0 or T.

This will actually determine the integc-s nI and n2 used throughout. We'll

later fird that selecting e = 0 (e = T) will be natural if the fast eigen-

values of A(t) are all stable (unstable) everywhere.

We now begin an extended discussion on how to compute L(e). In so

doing, we make improvements on previous solutions to the time-invariant A

problem for which L(t) is constant. If we partition the spectral decompo-

sition of A(e) as

Fi 1 0-1,

A(e) = MI
10 2

where ,(J = S(e) and M = (M ij), we can always reorder the entries in

the state vector x so that the n x n1 matrix Mll is nonsingular. The

II
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columns of L2J will span the n, dimensional eigenspace of A(e)

corresponding to the slow eigenvalues in S(e) and

-I1
(11) L(e) = - 1

will be the unique solution of the algebraic Riccati equation

(12) A2 2 (e)L - LA11 (e) + LAI 2 (e)L - A21(e) = 0

i.e. L(e) = 0, achieving the time-scale decoupling

(13) \(All(e)) =  S(e) and X(A22(e)) = F(e)

Though the matrix equation (12) has many solutions, only (11) provides

the desired time-scale separation (cf. Anderson [21). We also note that

(11) avoids the use of vectors in the n2 dimensional fast eigenspace.

An alternative representation

(14) L(e) = Q Q1 I

in terms of the left eigenspace corresponding to the n2 fast eigenvalues

of A(e) would be more practical if n2 << n1 . The corresponding

upper triangular transformation might then be more convenient then Tl

since it would first isolate the purely slow component. Here we have parti-

tioned 1-I = (Qij) after its first nI rows and columns and the invertibility

of Q22 follows froti that of Fill. The nontrivial result (11) fOllows vi3

linear alqebra, as does (14). Specifically, if All(e) has the decompos-

ition XGX -I, the algebraic Riccati equation can be rewritten as

.44
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A2 1(e) - A22(e)L(e) = -L(e)XGX -1 . For Y : -L(e)X, A(e)[ : G, so

X(Al(e)) =S(e) implies that we must have K iliK for some non--YI = M21]

singular K, i.e. L(e) = -YX-l = -M M_1 . Calculating further with this
21 11

L(e), A(e) = Tl(e)A(e)Ti(e) is upper block triangular. Recent work in

Medanic [22] also describes the invariant manifolds of such matrix

Riccati equations. Watkins [391 mentions numerical difficulties occurring

when M11 is ill-conditioned.

Note further that any nI dimensional basis of the slow eigenspace

could be used instead of in (11) to obtain L(e). One possibility1]

is to compute n1 Schur vectors for this slow eigenspace, cf. e.g. Laub

[201. Once an approximate L(e) is obtained, one may improve on its

accuracy by iteration in the linear equation

(15) Li+ l = (A22 (e) + LiAl 2 (e))-I(LiA1 1 (e) + A21 (e))

Anderson [2] shows that this iteration converges linearly with asymptotic

rate f-l(e)s(e), so this method is particularly well-suited to systems

whose time-scale separation parameter ui is very small.

The iteration scheme (15) can be obtained from the simultaneous

iteration method (cf. Stewart [34] and Avramovic [4]) for calculating

the dominant eigenspace corresponding to the n2 fast eigenvalues of A(e).

That method generates the n n matrix V as the limit of the iteration

(16) Vk+l = VkA(e)

.. . ... -- . III II ..i .,
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Splitting Vk Vkl Vk2I after its first n, columns and setting Lk =

Vk2Vkl (cf. the alternative representation (14) for L(e)), (16) reduces

to (15). The asymptotic rate of convergence f-l(e) (e) was known in this

context. Indeed, the fact that (16) converges globally under very mild

assumptions on V0 implies that our iteration scheme (15) will also be

robust with respect to initial iterates. Thus L need not be generated

through a preliminary approximate eigenanalysis of the slow eigenspace

of A(e); in practice a trivial Lo achieves convergence. The reader won't

be surprised to find closely related analysis in the stiff differential

equations literature, cf. e.g. Alfeld and Lambert [1].

The Riccati differential equation for L(t) will have the constant

solution L(e) when A is constant or when it is possible to find a

constant basis , with N1 invertible, for the slow eigenspace of A(t).

Otherwise, we need to integrate the n2 X nI dimensional initial or

terminal value problem (10), (11) for L(t). We shall assume that it

provides a transformed system for z which is two-time-scale. Specifically,

we suppose:

(H2) the solution L(t) of the matrix Riccati problem remains

bounded throughout 0 < t < T and the eigenvalues of the

matrix All(t) All A 12L remain small in magnitude

coLpared to those of A2 2(t) A2 2 + LA1 2 throughout the

interval.

I

* v . - II |1 ... " . . .. .



13

If this hypothesis fails at any point, our order reduction procedure

will simply not be appropriate. We note that some leeway is allowed in

judging the separation of eigenvalues between A and A22, i.e. in

deciding just how small a p is small enough. Computational and stability

aspects of the integration procedure will be illustrated below through

discussion and examples.

One can proceed further and block diagonalize the upper triangular

matrix A by a second nonsingular transformation

(17) y = T(t)z = T(t)x

for

T(t) T2(t)Tl(t)

and

I n  K(t)

T2(t) L J

cf. (5). Thus (17) converts (1) into the two-time-scale system

(18) = A(t)y + h(t)u

cf. (6) where

A11(t) A 12 t

A(t) = (TA + )T-  L o A22(t

02

1
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with A12 = K - AllK + KA22 + AI2 and B = TB. If the nI x n2 matrix K

satisfies the linear differential equation

(19) K = A11(t)K - 6 2 2(t) - A12 (t)

the matrix A will be block diagonalized and the system for y will be time-

scale decoupled, i.e. the system for the first nI components of y will be

completely decoupled from that for its last n2 components. Corresponding

to the endpoint condition L(e) = 0 for L, we now impose the condition

K(T - e) = 0 at the opposite endpoint because the variational equation

(20) = A 11 2 + A22

for L is opposite in stability to the equation (19) for K. Thus K(T - e)

will satisfy the Liapunov equation

(21) A11(T - e)K(T - e) - K(T - e)A22 (T - e) - A12(T - e) = 0

Its solution is unique because A11 and A22 have no common eigenvalues,

cf. e.g. Bellman [6]. An explicit solution is given by K(T - e) =

-M12(T - e)Q2 2(T - e) where M12 and Q22 are sub-blocks of the modal

matrix M for A(T - e) and its inverse Q, cf. (11) and (14). It is

preferable, however, to obtain K(T - e) numerically by iteration in the

equation

(22) Kj+I(T - e) = (A11 (T - e)K (T - e) - AI(T - e))A22(T - e)

with initial iterate K (T - e) 0. As in the iteration scheme for
0

L(e), the convergence will be rapid for IlA2 (T - e)jj II AI(T - e)tI < o

t2



small in the spectral norm. When A is time-invariant, this provides the

constant matrix K appropriate throughout the interval. More generally,

however, we assume

(H3) The solution K(t) of the linear terminal or initial

value problem (19), (21) stays bounded throughout

0 < t < T.

We note that (H3) is automatically satisfied if K(T - e) and the coeffi-

cients in the differential equation (19) remain bounded.

With these three hypotheses, our time-varying LK transformation (5)

has now become completely determined, and our problem (1) is reduced to

solving the time-scale decoupled system

(23) -l =  A11 (t)yl + 1 t )u  '

(24) Y2 = A22(t)Y2 + B2 (t)u '

where y = 1l and B = TB is partitioned after its first n1 rows.

Boundary conditions for x and y are related through the nonsingular

matrix T. The solutions of (23) and (24) are given by

t
(25) Yi(t) =Yi(t)ci + f Yi(t)Y_1 (s)Bi(s)u(s)ds

1i = 1 and 2, for constant vectors cis where the Y are fundamental

matrices satisfying

Yi = A.ii(t)Yi Yi(0) = Ini  0 < t < T
1 11 1 n.
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Though the representation (25) is useful, direct numerical integration

for y, and Y2 is preferable to numerical implementation of (25).

Using the spectral norm, our two-time-scale assumption implies that

ll(ti = s(t) while iA2 (t)1 <K -l (t), so HIIA (t)H
!A ll ^2A2I ~~ )I22(t)li < 'OIA 22(t)i[.Tu Y2(t)

is rapidly varying compared to YI(t). Indeed, when A2 2(t) has eigen-

values with large negative real parts, say of order 0(- -), Y decays toc T 2
zero exponentially fast and it becomes negligible outside an initial

O(cT) boundary layer. Likewise, when the eigenvalues of A11 (t) are

small, like O(K), Y1 (t) is nearly constant throughout [0,T] provided

T << 1/K. It is natural, then, to think of y, as the predominantly slow

solution and of Y2 as the predominantly fast solution, realizing that the

slow/fast interpretation could be corrupted by the forcing control

B(t)u(t). This slow/fast decomposition would carry back to the original

system (1) as

(26) x(t) = l(t-1 y(t

Altogether, then, we've transformed our original problem (1) under

hypotheses (Hl)-(H3) into the integration of four separate problems for

L, K, yl and Y2' with L and K being constant for tirie-invariant A

matrices. We'll now show how the procedure can be substantially

simplified through approximations when we impose a fast mode stability

assumption. Other approximations will be appropriate under different

hypotheses.

'I
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3. Reduced order modelinj__or the initial value problem-approximate

analysis.

Let's now consider the initial value problem for (1), assuming

that the time scale parameter (cf. (3) and (Hi)) is small, i.e.

(27) < < 1

and that

(H4) the eigenvalues fj(t) of A22(t) all have large negative

real parts throughout 0 < t < T.

Then

(28) - T max Re fj(t) « 1
l<j<n 2

0<t<T

also holds.

Because (3) implies that I IAll1 << 1A22 11' we can expect the

solution,Y! of the linear variational equation (20) for L to be well-

approximated through the nearby system L = -LA22. Further, the large
A

magnitude and stability of the eigenvalues of A2 2 suggest, via singular

perturbations theory, that the initial value problem for,- will have

bounded solutions asymptotic to,.X(t) = 0 away from t = 0, while the

solution of the corresponding terminal value problem will become

unbounded for t < T. Therefore, errors made in the numerical integra-

tion of the Riccati equation for L(t) should decay exponentially to

zero in forward time and grow exponentially in reverse time. To keep

4
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the calculated L(t) bounded, then, under hypothesis (H4), we must take

e 0 0, i.e. we define L and K through initial and terminal value

problems, respectively. Indeed, the linear system for K will be well-

approximated through the nearby system K = -KA22 - AI2 since p < 1,

and as E -, 0 (and JjA 2 2 11 - -) the limiting solution will satisfy

k 0 for t < T. Thus, the familiar quasi-steady state approximation,

consistent with our terminal condition K(T) = 0, holds asymptotically.

For this reason, we rewrite the system (19) for K as

(29) K(t) =  Kl(t) + S(K(t))

with the nonhomogeneous term

KI(t)= -A12(t)A22(t)

and the linear operator

S(K) =(A 11K - Al11 22

We shall solve the system by successive approximations, starting with

the trivial iterate K,(t) 0. Thus, we successively define the

approximants

(30) K." K + S j 2II
for K where SZ(KI) = S(S I(K1)) for each > > 1 and S°(K) = KI . In

practice, only a few iterates will be needed because S(K) has a small

norm due to the sizesof and c , i.e. of AA22 and J.

4 This iteration scheme avoids the need to directly integrate the terminal

I

'I
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value problem for K and to store its solution for later use in evaluating

T and T-.and for integrating the initial value problem for yI" The

successive differentiations of K1 involved don't pose a real problem

because K(t) is asymptotically negligible for t < T. Indeed, if we omit

the derivative term in (29), our iterates (30) at t = T coincide with

those of (22) used to obtain K(T). The resulting slow-mode or quasi-

steady state approximation K s(t) to K(t) will be asymptotically valid

for t < T. The approximation K st) z K(t) should even be fairly good

near t = T, because we picked K(T) = 0.

Returning, then, to the initial value problem (24) for Y2' with

Y2(0) =[L(0) In2]x(O), the fact that Re X(A22 ) has only large stable

elements suggests that Y2 should be nearly equal to its slow-mode (or

quasi-steady state) approximation y2 z 0, i.e.

(31) y25(t) _- -l(t)B 2 (t)u(t)(31) Y2s~t -22 2

for t > 0. Indeed, singular perturbations theory would show that the

"composite" solution

(32) Y2 (t) - Y2s(t) + Y2f(t)

will provide a uniformly valid approximation to Y2 ' with the fast-

varying vector Y2f satisfying

(33) 2f= A22(t)y2f  Y2f(0) = Y2(0) - Y2 s(O)

and decaying to zero exponentially in an O(cT) neighborhood of t = 0.

[If a good approximation to Y2 is needed near t 0, it is necessary

4,
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to integrate the system for Y2f only over a short initial interval, but

with a relatively small mesh spacing.) 3ecause 2 satisfies

Y2 = A22Y2 + B + 2s ' Y2(
0) = Y2(

0 )

comparison with (24) suggests that the composite vector Y2 will be a good

approximation to Y2 (and Y2s will be a good approximation to Y2 away from

t = 0) provided 1Y2sl is small on 0 < t < T compared, say, to the

supremum of IY2 (O)1 and ly2s(t)l . Thus, we'll assume

(H5) the slow-mode approximation Y2 s to Y2 is slowly-varying

throughout 0 < t < T.

N,'e recall that slowly-varying functions play an important roie in

asymptotic analysis (cf. Feshchenko et al. [131) and note that the

assumption is reasonable in the common situation that Y2s is itself

small when IB2 u i is small compared to the large !A22 1 . Hypothesis (H5)

also reflects the fact that rapid variation of B2u could cause the state

Y2 to be fast for t > 0, even though the free response would be

asymptotically negligible there. We note, in particular, that because B2

[L Ir12 ]B, y2s could become rapidly varying when our asymptotics break-

down because " isn't small or the forcing Bu is rapid. The asymptotic

decomposition (32) of Y2 into slow and fast parts could also be motivated

by using Laplace's method (cf. Olver [251) on the integral representation

(25) for Y2"

We shall integrate the full nI dimensional system (23) for y, using

the initial vector yl(O) = (In + K(O)L(O) K(O))x(O). (If the eigen-

values of A1 l have large real parts, we might also be able to approximate

*1
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Yl by a quasi-steady state approximation Yls within (0,T). Then,

however, a change of time scale s = At for an appropriate constant A

might eliminate this stiffness.) When (A1ll1 isn't large and the

control term B1u isn't rapidly-varying, (23) can be integrated with step-

sizes much larrer than would be necessary for integrating the original

system.

For t > 0, then, the solution of our original problem will be well-

approximated by the slow-mode approximation

(34 ) 
(t) = T -1 (t)LY (t

(If desired, we'd have to correct this near t = 0 by taking the fast-

mode correction y2f(t) to y2s into account.) For t > 0, we've achieved

a substantial order reduction because we need only integrate an initial

value problem for L(t) and another for yl(t). This is because Y2s is

obtained explicitly from the algebraic equation (31) and K is obtained

from a fast-converging iteration scheme (30), under our fast-mode

stability assumption.

All these arguments can be made completely rigorous by explicitly

using the small parameters :i and c to rescale our differential equations

and carrying out a careful asymptotic analysis as c and pi simultaneously

tend toward zero. For only moderately small parameters, a full integra-

H tion of the linear systems for K and Y2 might be needed. The connection

4 between our approximations and numerical methods for systems of stiff

differential equations is closest to the smooth approximate particular

solution techniqueof Dahlquist [9] and Oden [24].
*1
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To sunmmarize, we list the somewhat oversimplified steps appropriate

for obtaining a reduced order model of our fast-mode stable, two-time

scale system on t > 0. They are:

(1) Use the eigenvalues of A(O) to determine the number nI of

slow modes.

(2) Obtain L(O) by iterating in the equation

Li+ 1  = (A22(0) + LiA12(O))- (LiA1I(0) + A21(O))'

i > 0, L =0.
-- 0

(3) Integrate the initial value problem for

L -- A22L - LA11 + LA1?L - A2 1, making sure that the trans-

formed system remains fast-mode stable and two-time scale

with nI constant throughout 0 < t < T and that the slow-

mode approximation Y2 s remains slowly-varying there.

(4) Obtain K(t) on [O,T] through the iteration

Kj+l(t)= (-A12 (t) + A ll(t)Kj tW - K i(t))A 22(t),

j > 0, K (t) 0. (Alternatively, obtain the slow-mode

approximation K s(t) by omitting the derivative term.)

(5) Integrate the initial value problem for yl(t) and obtain the

reduced-order solution

I n  -K(t)

X(. 11 t ly t) for t > 0.
_-lt) ) + + L(t)lK(t

tn

!Lt 2
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4. Related Problems.

a. Nearly constant slow modes are found for two-time-scale systems

when the eigenvalues of A22 are not large. Then, the small size of the

eigenvalues of A11 suggests that YI(t) is nearly constant on a fixed

finite interval. Though the dynamics for Y2 are not simplified, we

obtain order reduction in the sense that y, will simply track its

t

forcing, i.e. yl(t) Yl(O) + Bl(s)u(s)ds.

0

b. It may sometimes be simpler to simply block-triangularize our

system matrix through the matrix T In the system (9) for

(Zl
z = z 1, the fast modes are decoupled via L(t), so . slow-mode approxi-

mation for z2 could be used in the forcing for z1 on t 0 0. We block-

diagonalized our system, since the linear problem for K(t) seems simple

after the quadratic problem for L(t).

c. When the eigenvalues of A2 2 have both large positive and large

negative real parts, the initial (terminal) value problem for L(t)(K(t))

will no longer be well-posed. Only certain two-point problems for x can

be expected to have bounded solutions (cf. O'Malley [26] and O'Malley and

Anderson [281). Effective use of time-scale separation should, nonethe-

bless, be computationally significant in obtaining approximate solutions

to appropriate two-point problems.

I'
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4

"'7 . ° -" . . ... . . " = ..



24

d. The nI slow" solutions of the unforced problem are spanned by

the columns of the matrix 1 (t). If we therefore inteqrate the
h-L(t) ! I

initially slow modes of our system (1) forward in time to obtain the

, n matrix we'll necessarily have L(t) = -X (t)X(t). Thus1 [ 2 (t)j

existence of L is guaranteed as long as XI(t) remains nonsingular. For

problems where L becomes unbounded on 0 < t < T, there still remains the

possibility of reinitializing our problem to keep the appropriate nI x nl

matrix nonsingular. This corresponds to the reorthonormalizations used

by Scott and Watts [32].

5. Numerical Examples.

In practice, the need for reduced-order modelling requires us to use

our schemes on problems where the time-scale separation parameter u and

the fast-mode stability narameter c are not asymptotically small. Among

many other considerations, we must then be particularly concerned with

the difference between eigenvalue stability and actual stability and with

the occurrence of eigenvalues with large imaginary parts that can allow

slow modes (so classified by eigenvalue magnitudes) to decay faster than

some fast-modes. The latter concern might be illustrated through a third

order system with the slow eigenvalues s = -1 and the fast eigenvalues
I10

f1,2 = -0.1 + ilO. Then, f = , so for T sufficiently large, all modes

will be negligible away from t = 0. Otherwise, the fast modes cannot be

ignored. A check on the relative stability of the slow and fast

IL
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subsystems can be made through the ratio u(t) = -max Re(si(t)) I

/max(Re f (t)) and its waximum over 0 - t < T.j -1

If A(t) has the time-varying spectral decomposition A MJM, the

change of variables w = MIx converts the problem (1) into w = (J M- M)w

q M-1 Bu. Thus eigenvalue rotation, measured by the size of M-If, can

substantially alter the stability suggested by the eigenvalues of A and J.

Rapid variation of the slow-eigenspace of A could, in particular, make L

and Y2s rapidly-varying, and jeopardize the appropriateness of our

approximations.

We shall consider two time-varying third order problems with one

slow mode. Specifically, let the state matrices Ai = MJiM-
1 for i = I

and 2 have

-2-l -l ~ t 0 0

M= 1 2 1 0 1 0

12 l 0 0 (1 + h(t))-1I

with J and J2 being real canonical forms with snectra N(Jl )

-(I + h'(t))l,10,12) and x(J2) = -(1 + h'(t))fl,3 + 10i). Thus for both

examples, j 0.1 while (-1 ,F 2) = (0.022,0.074) for T = 4. Therefore, the

fast-mode stability and the relative stability of the fast modes is stronger

for the first example. We'll also take x(0) = I , u(t) = n2" 1 si nsin4. iI,

and h(t) = h'(t) = 1 (1)

For both examples, the appropriate initial condition for the Riccati
Z I=O~ = . Snc

differential equation (10) is the two vector L(0) I i. Since
2 21

the quadratic equation (12) provides a steady-state for the corresponding

differential equation (10) at t = 0, we might attempt to find L(0) as an

4,
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equilibrium solution. Figure 5 reoresents the 9l 92 phase plane for

example one. As shown, all points above the line i = 3 - converge

to L(O), but points below this line diverge to infinity. For example

two, a slow oscillatory convergence is illustrated in Figure 6. Thus,

this natural way to seek L(O) is only locally convergent, in contrast to

the safer, globally convergent iterative method we described previously

via (15).

Once L(O) is obtained, the time-varying Riccati equation (10) can

be integrated from t = 0 to 4. The solution L(t) -- I(t)j for example

one is illustrated in Figure 7. We have also plotted the smooth solution

L(t) with L(O) = L(O) of the algebraic Riccati equation obtained when we

set the derivative term in (10) to zero. Lt) is a good approximation to

L(t). This should not be unexpected since E(t) = L(t) - L(t) satisifes

(A22 + LA12)E - E(A11 - A12E) + EA12E - L on 0 < t < 4 with E(O) = 0.

Presuming A2 2 + LA1 2 maintains large, strongly stable eigenvalues

compared to A1 1 - A1 2L and presuming L isn't large, singular perturbations

would suggest a small error E(t) throughout 0 < t < 4. Thus, we could

often expect to use L, the solution of an algebraic system, to approximate

L(t). Figure 7 also includes trajectories Lit) for the Riccati system

with perturbed initial conditions. They, too, converge to L(t) for t > 0

provided the initial perturbations aren't too large. With the weaker

fast-mode stability of Example 2, we found that the initial behavior of L

trajectories was oscillatory and convergence to L was delayed (cf.

Figure 8).

I',e
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The linear differential system (19) for K(t) = (kl(t) k2t)) was

integrated backward in time from t = 4 to t = 0. It could also be

solved readily via the iteration approach. The relative behavior of

K(t), of the corresponding linear algebraic problem for K(t), and of the

Droblem for k(t) with perturbed terminal values is analogous to that for

L(t), L(t), and L(t), except that the convergence of K to K also holds

for large perturbations of end vectors.
I

By changing h' to the more oscillatory g sin Tt, the eigenvalues of

A are changed, but there is little change in the solution L(t) of the
I

Riccati system. The corresponding change of h(t) to g sin 7t, however,

produces a more rapid oscillation in the eigenspace of A(t) and there

results more rapid change in the decoupling vector L(t). Nonetheless,

as Figures 9 and 10 illustrate, E(t) still remains a good approximation

to L(t).

By suptrposition, the solution x(t) of our forced initial value

Problem (1) can be considered to be the sum of the separate responses of

the unforced system with initial vector x(O) and to the input u(t) with

zero initial state. The unforced response is illustrated in Figures 11

and 12. The exact solution x(t) is well approximated by the first order

approximation x(t) outside an initial transient region of approximate

thickness 20c. This corresponds to 0.5 time units for Example 1 and 1.7

units for Example 2. For slowly-varying control inputs u(t), the

agreement between x(t) and x(t) is very good for both examples. For the

rapidly varying control input u(t) = sin Tt, however, the resulting

approximations x(t) for Example 1 are better than for Example 2, which

has weaker fast-mode stability (cf. Figures 13 and 14).
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